

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : FLAT(18CS0509) Year & Sem: II / II **Course & Branch**: B.Tech – CSE **Regulation:** R18

<u>UNIT I</u> Inroduction, Finite Automata

1. a) Consider the below finite automata and check the strings are accepted or not

States	Input Alphabtes	
(Q)	0 1	
<mark>->q</mark> 0	q1	q3
q1	q0	q2
(q2)	q3	q1
q3	q2	q0
(:::) 1010		

(i) 1110 (ii) 0001 (iii) 1010

b) Define NFA. What are the differences between DFA & NFA?

2. Convert the following NFA with ε moves to DFA without ε moves.

3. Minimize the following finite automata.

[L2,2+2+2M] [L2,4M] [L2,10M]

[L3,10M]

Present	I/P=0		I/P=1	
State	Next State O/P		Next State	O/P
\rightarrow A	С	0	В	0
В	А	1	D	0
С	В	1	А	1
D	D	1	С	0

4. Convert the following Mealy machine into its equivalent Moore machine. [L2,10M]

5. a) Write about relations on sets.	[L1,2M]
b) Define Grammar? What are the tuples.	[L1,2M]
c) Define Finite Automaton.	[L2,2M]
d) Define alphabets, strings, Languages?	[L3,2M]
e) Define Melay machine and Moore machine.	[L2,2M]
6. a) Discuss Chomsky's Hierarchy of formal languages.	[L1,5M]
b) Explain briefly about DFA and NFA?	[L1,5M]

7. a) Define Moore machine? Construct Mealy machine corresponding to Moore machine?

[L2,5M]

States	Next States		Output
(Q)	I/P=0 I/P=1		Output
- > q1	q1	q2	0
q2	q1	q3	0
q3	q1	q3	1

b) i) Define equivalence of DFA and NFA?

ii) Write a procedure for conversion of NFA to DFA?

[L3,2+3M]

8. Write down procedure for Myhill- Nerode theorem with a given example.

('*' means final states).

	Next State		
Present State	I/P=a	I/P=b	
\rightarrow A	В	F	
В	А	F	
С	G	А	
D	Н	В	
Е	А	G	
*F	Н	С	
*G	А	D	
*Н	А	С	

[L2,10M]

9. a) Define relations on set and explain its property with an exampleb) Define NFA and DFA. Construct DFA for the given NFA

[L1,3M] [L2,7M]

[L3,3M]

[L2,7M]

	Next state		
	0	1	
$\rightarrow q_0$	q0,q1	q0	
q1	q2	<i>q1</i>	
q2	q3	q3	
q3	-	q2	

10. a a) Write the Procedure for Minimization of FA(Equivalent Method)?b) Minimize the following DFA

Present states	i/p=0	i/p=1
q0	q1	q2
q1	q2	q3
q2	q2	q4
* q3	q3	q3
*q4	q4	q4
q5	q5	q4

**Here q0 is initial state and q3 and q4 are final states.

<u>UNIT II</u> Regular Languages

a) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)* [L1,5M]
 b) State Arden's theorem and construct the regular expression for the following FA using Arden's theorem.

2. Explain about Arden's theorem, Construct RE from given Finite Automata.[L1,5M][L1,10M]

3. a) List out the identities rules of Regular expression. [L1,4M] [L2,6M] b) Prove that i) 10+(1010)*[^+(1010)*]=10+(1010)* $ii)(0+011^*)+(0+011^*)(01+0100^*)(01+0100^*)^*=01^*(010^*)^*$ 3. a) Construct FA from RG S->aA/bB/a/b A->aS/bB/b $B \rightarrow aA/bS$ [L3,4M] b) Construct an equivalent FA for given regular expression (0+1)*(00+11)(0+1)* [L3,6M] 5. a) Prove R=Q+RP has unique solution, R=QP* [L1,3M] b) Explain about the Arden' theorem, Construct RE for given FA [L1,7M]

q0

- 6. Explain how equivalence b/n two FA's are verified with an example. [L2,10M]
- 7. Prove that the language $L = \{a^n b^n | n \ge 1\}$ is not regular using pumping lemma [L2,10M] with procedure.

8. a) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)* [L3,5M]
b) State Arden's theorem and construct the regular expression for the following FA using Arden's theorem.

[L3,5M]

9. a)Write the process of equivalence two FA's? Find whether the equivalence two FA's or not.[L3,7M]

b) Construct the Regular Grammar for the given Regular Expressions		[L3, 5M]
i) $ab(a+b)$ ii) $a^*(a+b)b^*$		
	[L3,3M]	
10. a)Prove that the language L= $\{a^nb^nc^n n \ge 1\}$ is not regular using pumping lemma.		
b) Construct FA for the given RG i) S> a	aA/b ii) A->0B/1	[L2,5M]

b) Construct FA for the given RG	i) S> aA/b	ii) A->0B/1	[L2,5M]
-	$A \rightarrow bB/a$	B-> 1C/0	
	B->c	C->0D/1	

<u>UNIT III</u>

Contex Free Grammars and Languages

Contex Free Grammars and Languages	
1. Write the procedure and Eliminate left recursion from the following Grammar	[L2,10]
E→E+T/T	
T→T*F/F	
F→(E)/id	
2. a) Define derivation tree? Construct Derivation tree, Leftmost and Rightmost	derivation and
Right most derivation for the string 11001010 [L2	,7M]
S→1B/0A	
A→1/1S/0AA	
B→0/0S/1BB	
b) Construct CFG for the language consisting of palindromes of the string?	
3. a) Define Ambiguous grammar with one example?	[L2,4M]
b) Remove Left recursion from the grammar $S \rightarrow Sab/T$	
T→Tcd/F	
F→Fa/G	[L2,6M]
3. a) Explain Left recursion and Left factoring.	[L3,4M]
b) Perform left factor from the grammar $A \rightarrow abB/aB/cdg/cdeB/cdfB$	[L3,6M]
4. Simplify the following context free grammar. (Here, Λ stands for epsilon(ϵ)).	[L4,10M]
S→TU V	
T→aTb Λ	
U→cU ∧	
V→aVc W	
W→bW A	
5. Convert the following grammar into Greibach normal form.	[L4,10M]
S→AA/a	
A→SS/b	
6. a) Write the procedure for Convert the grammar into CNF?	[L3,4M]
b) Convert the following grammar into CNF.	[L3,6M]
$S \rightarrow bA/aB$ $A \rightarrow bAA/aS/a$ $B \rightarrow aBB/bS/a.$	
7. a) What is linear grammar? Explain in detail with example.	[L3,5M]
b) Explain the closure properties of context free languages.	[L3,5M]
8. a)Remove the unit production from the grammar	
$S \rightarrow AB, A \rightarrow E, B \rightarrow C, C \rightarrow D, D \rightarrow b, E \rightarrow a$	[L3,4M]
b)Remove ϵ productions from the grammar	
$S \rightarrow ABaC, A \rightarrow BC, B \rightarrow b/\epsilon, C \rightarrow D/\epsilon, D \rightarrow d$	[L3,6M]
9. a) Explain Pumping lemma for Context free languages with one example?	[L3,6M]
b) What are the closure properties of CFL's?	[L3,4M]
10. Simplify the following CFG $S \rightarrow 0A \mid 1B \mid C, A \rightarrow 0S/00, B \rightarrow 1/A, C \rightarrow 0/1$	[L4,10M]

<u>UNIT IV</u> Pushdown Automata

	Pushdown Automata	
1.	a) Construct a PDA which recognizes all strings that contain equal number	
	of 0's and 1's.	[L2,6M]
	b) A PDA is more powerful than a finite automaton. Justify this statement.	[L2,4M]
2.	Construct PDA for the following Grammar.	
	$S \rightarrow aB$	
	$B \rightarrow bA/b$	
•	$A \rightarrow aB$	[L2,10M]
3.	Construct PDA for the following Grammar	
	S→0BB	
	$B \rightarrow 0S/1S/0$	[L2,10M]
1	Show an ID for the string 010000 is generated for PDA? Construct a CFG equivalent to the following PDA.	[I 2 10M]
4.	PDA={(p, q), (0, 1), δ , p, q, (Z, X)}, where p is initial state, q is final state.	[L2,10M]
	δ is defined as $\delta(p,0,Z)=(p,XZ)$, $\delta(p,0,X)=(p,XX)$, $\delta(p,1,X)=(q,\epsilon)$, $\delta(p,1,X)=(p,\epsilon)$.	$\delta(\mathbf{n} \in \mathbf{Z}) = (\mathbf{n} \in \mathbf{Z})$ [I 3 10M]
5	a) Construct an equivalent PDA for the following CFG	[L3,7M]
5.	S→aAB bBA	
	$A \rightarrow bS \mid a$	
	$B \rightarrow aS \mid b$	
	b) Explain the formal definition of PDA.	[L2,3M]
6.	a) Define Instantaneous description (ID) in PDA.	[L2,5M]
	b) Explain the graphical notation of PDA with one example?	[L2,5M]
7.	a) Write the process for convert PDA into an equivalent CFG.	[L4,4M]
	b) Convert the following PDA into an equivalent CFG.	[L4,6M]
	$\delta\left(\mathbf{q}_{0},\mathbf{a}_{0},\mathbf{z}_{0}\right) \boldsymbol{\rightarrow} \left(\mathbf{q}_{1},\mathbf{z}_{1}\mathbf{z}_{0}\right)$	
	$\delta(\mathbf{q}_0,\mathbf{b},\mathbf{z}_0) \rightarrow (\mathbf{q}_1,\mathbf{z}_2\mathbf{z}_0)$	
	$\delta(\mathbf{q}_1, \mathbf{a}, \mathbf{z}_1) \rightarrow (\mathbf{q}_1, \mathbf{z}_1 \mathbf{z}_1)$	
	$\delta(q_1,b,z_1) \rightarrow (q_1,\lambda)$	
	$\delta(q_1, b, z_2) \rightarrow (q_1, z_2 z_2)$	
	$\delta(q_1, a, z_2) \rightarrow (q_1, \lambda)$	
	$\delta(q_1, \lambda, z_2) \rightarrow (q_1, \lambda) //$ accepted by the empty stack.	
8.	a) Define push down automata? How PDA acceptance can be defined.	[L2,5M]
	b) Define Instantaneous description (ID) in PDA with one example?	[L2,5M]
9.	a) Explain Differences between DPDA and NPDA?.	[L2,4M]
	b) Construct an equivalent PDA for the following CFG.	[L3,6M]
	S→aAB bBA	
	A→bS a	
	$B \rightarrow aS \mid b.$	
10	. Explain Deterministic Push Down Automata with example?	[L2, 12M]

<u>UNIT - V</u> <u>Turing machines & Undecidability</u>

1.	Construct a Turing machine which recognizes the palindrome?	[L1,10M]	
2.	Construct a Turing machine for Language $L=\{a_b^{n,n}, /n>0\}$	[L1,10M]	
3.	Construct a Turing machine that recognizes the language $L=\{a^nb^n, n>1\}$. Show an ID for the string 'aabb'	
	with tape symbols. [L2,	10M]	
4.	Explain conversion of regular Expression to TM with example.	[L3,10M]	
5.	Explain the various types of Turing machine with suitable examples?	[L3,10M]	
6.	Explain Universal turing machine	[L3,10M]	
7.	7. a)Design a multi head Turing Machine for checking whether a binary string is a palindrome or no		
	Show the ID for 1001. [L3,6M]		
	b) Differences between PCP and MPCP?	[L3,4M]	
8.	Explain in detail about variations of the TM?	[L3,10M]	
9.	Construct a Turing machine that recognizes the language a ⁿ b ⁿ c ⁿ .	[L3,10M]	
10	a) Define PCP. Verify whether the following lists have a PCP solution.	[L3,7M]	
	$\binom{abab}{ababaaa}$, $\binom{aaabbb}{bb}$, $\binom{aab}{baab}$, $\binom{ba}{baa}$, $\binom{ab}{ba}$, $\binom{aa}{a}$.		
	b) Describe Turing reducibility?	[L3,3M]	

Prepared by B.Pavan Kumar, R.M.Mallika & P.Nagaraju.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : FLAT(18CS0509) Year & Sem: II-B.Tech & II-Sem **Course & Branch**: B.Tech - CSE **Regulation:** R18

<u>UNIT-I</u>

FINITE AUTOMATA

1.	Define Set and Relation?	[2M]
2.	Give the examples/applications designed as finite state system.	[2M]
3.	Define: (i) Finite Automaton(FA) (ii) Transition diagram	[2M]
4.	What are the applications of automata theory?	[2M]
5.	Differentiate NFA and DFA?	[2M]
6.	What is C-closure of a state q0?	[2M]
7.	What is a : (a) String (b) alphabet (c)Languages	[2M]
8.	Define Grammar?	[2M]
9.	What is Chomsky Hierarchy of Languages?	[2M]
10.	Define Moore and Mealy Machine?	[2M	1

<u>UNIT-II</u>

REGULAR EXPRESSIONS AND LANGUAGES

1.	What is a regular expression?	[2M]
2.	Differentiate L* and L+.	[2M]
3.	What is Arden's Theorem?	[2M]
4.	Write a r.e to denote a language L which accepts all the strings which begin or end	d		
	with either 00 or 11.	[2M]
5.	Construct a r.e for the language which accepts all strings with atleast two c's over			
	the set $\Sigma = \{c, b\}$	[2M]
6.	Reg exp denoting a language over $\Sigma = \{1\}$ having	[2M]
	(i)even length of string (ii)odd length of a string			
7.	What are the applications of Regular expressions and Finite automata	[2M]
8.	Reg exp for the language that accepts all strings in which 'a' appears tripled over			
	the set $\Sigma = \{a\}$?	[2M]
9.	What are the applications of pumping lemma?	[2M]
10.	10. Reg exp for the language such that every string will have atleast one 'a' followed by			
	atleast one 'b'.	[2M]

<u>UNIT-III</u>

CONTEXT FREE GRAMMARS

1.	Define Context Free Grammar?	[2M]
2.	What are the uses of Context free grammars?	[2M]
3.	What is the language generated by the grammar G=(V,T,P,S) where			
	$P=\{S->aSb, S->ab\}?$	[2M]
4.	What is :(a) derivation (b)derivation/parse tree ?	[2M]
5.	What is a ambiguous grammar?	[2M]
6.	Consider the grammarP={S->aS $aSbS C$ } is ambiguous by constructing:	[2M]
	(a) two parse trees (b) two leftmost derivation (c) rightmost derivation			
7.	Construct a grammar for the language L which has all the strings which are all			
	palindrome over $\Sigma = \{a, b\}$.	[2M]
8.	Define CNF and GNF?	[2M]
9.	Define Pumping lemma for context free language?	[2M]
10.	What are the three ways to simplify a context free grammar?	[2M]

<u>UNIT- IV</u> <u>PUSH DOWN AUTOMATA</u>

1. Define Pushdown Automata?	[2M]
2. Compare NFA and PDA.	[2M]
3. Specify the two types of moves in PDA.	[2M]
4. Is it true that the language accepted by a PDA by empty stack and final sta	ites
are different languages.	[2M]
5. Define Deterministic PDA?	[2M]
6. Define Instantaneous description(ID) in PDA?	[2M]
7. When is a string accepted by a PDA?	[2M]
8. What is the informal definition of PDA?	[2M]
9. State the equivalence of PDA and CFL.	[2M]
10. Is NPDA (Nondeterministic PDA) and DPDA (Deterministic PDA) equiv	valent? [2M]

UNIT- V

TURING MACHINE

1.	What is a turing machine?	[2M]
2.	What are the special features of TM?	[2M]
3.	Define Instantaneous description of TM.	[2M]
4.	What are the applications of TM?	[2M]
5.	Define a move in TM.	[2M]
6.	Define Types of TM?	[2M]
7.	When we say a problem is decidable? Give an example of undecidable problem?	[2M]
8.	Differentiate recursive and recursively enumerable languages?	[2M]
9.	Define PCP and MPCP?	[2M]